gpt2 tokenizer源码解析


上一篇文章中,分析了bert的tokenizer的细节,本篇继续分析gpt2的tokenizer的细节。 bpe的基本原理可以参考这篇文章:https://huggingface.co/course/chapter6/5?fw=pt 该tokenizer整体调用入口是encode方法。

"""Byte pair encoding utilities"""

import os
import json
import regex as re
from functools import lru_cache

@lru_cache()
def bytes_to_unicode():
    """
    Returns list of utf-8 byte and a corresponding list of unicode strings.
    The reversible bpe codes work on unicode strings.
    This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
    When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
    This is a signficant percentage of your normal, say, 32K bpe vocab.
    To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
    And avoids mapping to whitespace/control characters the bpe code barfs on.
    将256个byte值映射到一个unicode字符上,绕开空白符和控制符。
    """
    bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
    cs = bs[:]
    n = 0
    for b in range(2**8):
        if b not in bs:
            bs.append(b)
            cs.append(2**8+n)
            n += 1
    cs = [chr(n) for n in cs]
    return dict(zip(bs, cs))

def get_pairs(word):
    """Return set of symbol pairs in a word.
    Word is represented as tuple of symbols (symbols being variable-length strings).
    两个字节作为一个pair,上面的函数已经将每个byte映射到一个字符了。
    """
    pairs = set()
    prev_char = word[0]
    for char in word[1:]:
        pairs.add((prev_char, char))
        prev_char = char
    return pairs

class Encoder:
    def __init__(self, encoder, bpe_merges, errors='replace'):
        self.encoder = encoder
        self.decoder = {v:k for k,v in self.encoder.items()}
        self.errors = errors # how to handle errors in decoding
        self.byte_encoder = bytes_to_unicode()
        self.byte_decoder = {v:k for k, v in self.byte_encoder.items()}
        self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
        self.cache = {}

        # Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
        #这里是拆分token的正则,注意这里的re表示的是regex这个库
        #\p{L}表示一个letter
        #\p{N}表示一个number
        self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")

    def bpe(self, token):
        if token in self.cache:
            return self.cache[token]
        word = tuple(token)
        # 第一次调用时获得所有的双字节字符 假设word:abcd  那么 pairs: ab bc cd
        pairs = get_pairs(word)

        if not pairs:
            return token

        while True:
            #取得频率最高的一个bigram
            bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            #这个循环就是找到所有的bigram,将他们合并到一起加入到new_word
            while i < len(word):
                try:
                    #找到first字符首次出现的位置j
                    j = word.index(first, i)
                    # 将j之前的字符加入到new_word中,注意是extend
                    new_word.extend(word[i:j])
                    i = j
                except:
                    #没有找到的话,将剩余的字符加入到new_word中,new_word中是进行完此轮合并后的结果,用来进行下轮迭代的word
                    new_word.extend(word[i:])
                    break
                #找到了bigram,将其合并成一个,加入new_word
                if word[i] == first and i < len(word)-1 and word[i+1] == second:
                    new_word.append(first+second)
                    i += 2
                else:#没有找到bigram,将word[i]加入,修改i,继续往下寻找bigram
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                #获得新的pairs,继续下一轮合并
                pairs = get_pairs(word)
        #将最终的token序列用空格连接
        word = ' '.join(word)
        self.cache[token] = word
        return word

    def encode(self, text):
        bpe_tokens = []
        for token in re.findall(self.pat, text):
            #将token用utf8编码,然后逐个byte映射成相应的字符
            token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
            bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
        return bpe_tokens

    def decode(self, tokens):
        text = ''.join([self.decoder[token] for token in tokens])
        text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors)
        return text

def get_encoder(model_name, models_dir):
    with open(os.path.join(models_dir, model_name, 'encoder.json'), 'r') as f:
        encoder = json.load(f)
    with open(os.path.join(models_dir, model_name, 'vocab.bpe'), 'r', encoding="utf-8") as f:
        bpe_data = f.read()
    bpe_merges = [tuple(merge_str.split()) for merge_str in bpe_data.split('\n')[1:-1]]
    return Encoder(
        encoder=encoder,
        bpe_merges=bpe_merges,
    )

byte相当于字符, encoder中是字符组成的词和编号, vocab.bpe表示的字符合并成词的优先级顺序。 vocab.bpe数据示例:

2023-01-10-gpt2 tokenizer源码解析-2023-01-10-19-54-17

encoder.json数据示例: 2023-01-10-gpt2 tokenizer源码解析-2023-01-10-19-55-02


原创文章,转载请注明出处,否则拒绝转载!
本文链接:抬头看浏览器地址栏

上篇: bert tokenizer源码解析
下篇: 离线安装ubuntu操作系统和nvidia-driver